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Refractive index and extinction coefficient for polar cubic
crystals in the range of the single-phonon resonance

Z G Koinov†
Department of Physics, Higher Institute of Transport Engineering, 1574 Sofia, Bulgaria

Received 17 September 1997

Abstract. An expression for the complex dielectric constant of cubic polar crystals, valid in
the frequency range of the transverse optical phonon mode�TO , and including the local-field
effects, is derived. The analysis of the reflectance data of GaP shows that in the range 27.20–
27.40µm the local-field effects introduce significative variations in the index of refraction (about
15–20%) and in the extinction coefficient (about 30–40%).

1. Introduction

In this paper we restrict our attention to the lattice-reflection spectra for III–V compounds in
the frequency range of the phonon optical modes. It is common practice for those materials
in the above frequency range to calculate the index of refractionn(ω) and the extinction
coefficientk(ω) by using a classical harmonic oscillator model (Hass 1967). According to
this model (Born and Huang 1954) the displacement differenceu = u1 − u2 (u1 andu2

are the displacements of the two ions in a unit cell) satisfies a classical harmonic oscillator
equation of the eigenfrequency�TO and damping constantγ , where�TO is the frequency
of the transverse optical modes at theQ = 0 point in the Brillouin zone. The complex
dielectric constant in the one-oscillator model as the form:

ε(ω) = Reε(ω)+ i Im ε(ω) = ε∞ + (ε0− ε∞)ω2
0

ω2
0 − ω2− iγω

(1)

where the frequencyω0 is equal to the frequency�TO . ε0 = ε(ω = 0) is the static
dielectric constant;ε∞ is the dielectric constant at frequencies large compared to the optical
phonon frequencies, which is included in calculations to account for the dielectric screening
of the material due to the interband electronic transitions. The index of refraction, the
extinction coefficient and the absorption coefficientαf (ω) for the fundamental resonance
can be calculated by solving the following set of equations:

Reε(ω) = n2− k2 = ε∞ + (ε0− ε∞)[1− (ω/ω0)
2]

[1− (ω/ω0)2]2+ (ω/ω0)2(γ /ω0)2
(2a)

Im ε(ω) = 2nk = (ε0− ε∞)(ω/ω0)(γ /ω0)

[1− (ω/ω0)2]2+ (ω/ω0)2(γ /ω0)2
(2b)

af (ω) = 2ω

c
k(ω). (2c)
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The problem is reduced to a question of fitting the reflectivity data in terms of four
parametersε0, ε∞, ω0 andγ to give the best fit of the calculated reflectivity curvesR(ω)
(of an infinitely thick plate at normal incidence)

R(ω) = (n− 1)2+ k2

(n+ 1)2+ k2
(2d)

to the experimental ones. According to the paper by Kleinman and Spitzer (1960) the best
values of those parameters for GaP are:

ε0 = 10.182 ε∞ = 8.457 ω0 = 366.3 cm−1 (λ0 = 27.30 µm)

γ = 0.003ω0. (3)

The dielectric constant (1) does not take into account the rapidly varying part of the
polarization of the crystal due to the atomic displacements, i.e. the local-field effects.

The purpose of this paper is to investigate the contributions of the local-field effects to
the complex dielectric constant in the frequency range of the transverse optical modes. This
theory is needed for more accurate interpretation of optical spectra in crystals, because the
values of the index of refraction and the extinction coefficient are different depending on
whether or not the local-field effects are taken into account.

2. The complex constant beyond the one-oscillator model

In what follows we assume that the polarization of the crystalP (r, t) at the pointr is only
due to the atomic displacementsulκβ :

Pα(r, t) = P καβ(r −Rl)u
lκ
β (t) (4a)

wherel = 1, 2, . . . , N numbers the unit cells in the crystal,κ = 1, 2 characterizes the two
ions in the unit cell andRl is the lattice vector of thelth unit cell. The phenomenological
parametersP καβ(r−Rl) which determine the polarization of the crystal have the following
Fourier transform:

P καβ(r −Rl) = 1√
V

∑
Q

∑
Gn

exp[i(Q+Gn) · (r −Rl)]P
κ
αβ(Q+Gn) (4b)

where Gn is a reciprocal-lattice vector. The Fourier componentsP καβ(Q + Gn) are
connected with the rapidly varying part of the polarization of the crystal due to the atomic
displacements, whileP καβ(Q) determines the slowly varying part of the polarization.

The Fourier coefficientsεαβ(Q+Gn;Q+Gm;ω) of the dielectric tensorεαβ(r; r′; t)
can be calculated by means of the classical equation of the motion for the displacementulκβ
of the (l, κ) ion (Born and Huang 1954) or by the Green function method (Glinskii and
Koinov 1989). The final result for the dielectric tensor is:

εαβ(Q+Gn;Q+Gm;ω) = ε∞δαβδGnGm
− 4π

M0ε∞

∑
λ

Zα(λ,Q+Gn)Z
∗
β(λ,Q+Gm)

ω2−�2
λ(Q)+ iωγ

(5a)

where the phenomenological parametersZα(λ,Q+Gn) are defined as follows:

Zα(λ,Q+Gn) = P καβ(Q+Gn)e
κ
β(λ,Q). (5b)

HereM0 =
∑

κ Mκ is the total mass in thelth unit cell; �λ(Q) are the ‘bare’ phonon
frequencies with a wavevectorQ in a Brillouin zone,λ is a branch index, andeκ(λ,Q)
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denote the phonon eigenvectors. By using the fact that in the case of a cubic polar crystal
with two atoms per cell in theQ→ 0 limit one has:

lim
Q→0

∑
α

Zα(λ,Q)Qα

|Q| = Zδλ,LO (6a)

we can prove that the dielectric constant (1) is related to theGn = Gm = 0 component of
the longitudinal part ofε‖ of the dielectric matrixεαβ(Q+Gn;Q+Gm;ω):

ε‖(Q+Gn;Q+Gm;ω) = (Q+Gn)α

|Q+Gn| εαβ(Q+Gn;Q+Gm;ω)(Q+Gm)β

|Q+Gm| (6b)

ε(ω) = lim
Q→0

ε‖(Q+ 0;Q+ 0;ω). (6c)

The phenomenological parameterZ is related to the transverse optical phonon frequency
�TO = �TO(Q = 0) as follows:

4πZ2

M0ε∞(ε0− ε∞) = �
2
TO. (6d)

The main disadvantage of the relation(6c) is that the contributions of the local-field
effects to the dielectric constant have not been taken into consideration. There are two
methods that can be employed to overcome this problem. According to the first one, the
correct definition of the dielectric constant, which considers the rapidly varying part of the
polarization of the crystal due to the atomic displacements, is based on the matrix inversion
procedure. In the case of a cubic polar crystal with two atoms per cell in theQ→ 0 limit
one has (Johnson 1975):

ε−1(ω) = lim
Q→0

ε−1
‖ (Q+Gn;Q+Gn;ω)|Gn=Gm=0. (7)

The second way to calculate the dielectric constant without using the matrix-inversion
procedure is to employ the so-called crystal optics approximation (Koinov and Glinskii
1988). According to this approximation the dielectric constant has the form:

ε(Q, ω) = ε∞ − 4π

M0ε∞

∑
λ,λ′

Zα(λ,Q)Qα

|Q| S̃
(0)
λλ′(Q, ω)

Z∗β(λ
′,Q)Qβ

|Q| . (8)

Here S̃(0)λλ′(Q, ω) is the Fourier transform of the ‘bare’ phonon Green function which takes
into account the rapidly varying part of the polarization of the crystal due to the atomic
displacements.̃S(0)λλ′(Q, ω) satisfies the following set of equations:∑
λ′′

{
δλλ′′ [ω

2−�2
λ(Q)] −

ω2

M0c2

∑
Gn 6=0

Zα(λ,Q+Gn)D
(∞)
αβ (Q+Gn, ω)Z

∗
β(λ
′′,Q+Gn)

}
×S̃(0)λ′′λ′(Q, ω) = δλλ′ . (9a)

HereD(∞)
αβ (Q+Gn, ω) is the Fourier coefficient of the phonon propagator, screened (due

to the interband electron transitions) by the dielectric constantε∞:

D
(∞)
αβ (K, ω) =

4πc2

ε∞ω2− c2K2+ i0+

[
δαβ − c2KαKβ

ε∞ω2+ i0+

]
.

The above propagator can be written as a sum of a longitudinal (instantaneous) part and
a transverse (retardation) part. The most simple way to obtain the exact expression for
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S̃
(0)
λλ′(Q, ω) is to neglect the retardation part of the photon Green function in comparison to

its instantaneous part (Koinov and Glinskii 1988):

D
(∞)
αβ (Q+Gn, ω) ≈ 4πc2

ε∞ω2+ i0+
(Q+Gn)α(Q+Gn)β

|Q+Gn|2 .

The instantaneous approximation simplifies the left-and side of(9a) which assumes the
following form:∑
λ′′

{
δλλ′′ [ω

2(Q)−�2
λ(Q)] −

4π

M0ε∞

∑
Gn 6=0

Zα(λQ+Gn)(Q+Gn)α

|Q+Gn|

×Z
∗
β(λ
′′,Q+Gn)(Q+Gn)β

|Q+Gn|
}
S̃
(0)
λ′′λ′(Q, ω) = δλλ′ . (9b)

The solution of the above equations can be written in the form:

S̃
(0)
λλ′(Q, ω) =

∑
µ

Aλµ(Q)A
∗
µλ′(Q)

ω2− �̃2
µ(Q)

(9c)

where the unknown quantities̃�µ and Aλµ(Q) have to be determined by solving the
following set of linear homogeneous algebraic equations:∑
λ′

{
δλλ′ [�̃

2
µ(Q)−�2

λ(Q)] −
4π

M0ε∞

∑
Gn 6=0

Zα(λ,Q+Gn)(Q+Gn)α

|Q+Gn|

×Z
∗
β(λ
′,Q+Gn)(Q+Gn)β

|Q+Gn|
}
Aλ′µ(Q) = 0.

(9d)

The solutionsAλµ(Q) can be interpreted as components of an unitary matrix which
transformsS̃(0)λλ′(Q, ω) into a diagonal form.

In the instantaneous approximation the dielectric constant (8) has the form:

ε(Q, ω) = ε∞ − 4π

M0ε∞

∑
µ

1

ω2− �̃2
µ(Q)+ iωγ

∣∣∣∣ Z̃α(µ,Q)Qα

|Q|
∣∣∣∣2 (10a)

where

Z̃α(µ,Q) =
∑
λ

Aλµ(Q)Zα(λ,Q).

In a cubic polar crystal with two atoms per cell the relation(6a) holds and the dielectric
constant assumes the form:

ε(ω) = ε∞ − 4πZ2

M0ε∞

∑
µ

|ALO,µ|2
ω2− �̃2

µ + iωλ
. (10b)

The frequencies̃�µ = �̃µ(Q = 0) and the quantitiesAλµ = Aλµ(Q = 0) are determined
by the solutions of the following set of equations: �̃

2
µ −�2

TO −1TO,TO −1TO,TO −1TO,LO

−1TO,TO �̃2
µ −�2

TO −1TO,TO −1TO,LO

−1LO,TO −1LO,TO �̃2
µ −�2

TO −1LO,LO


×
ATO,µATO,µ

ALO,µ

 = 0. (11)
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The quantities1λ,λ′ (λ, λ′ = TO,LO) depend on the rapidly varying part of the polarization
of the crystal due to the atomic displacements:

1λ,λ′ = 4π

M0ε∞

∑
Gn 6=0

Zα(λ,Gn)(Gn)α

|Gn|
Z∗β(λ

′,Gn)(Gn)β

|Gn| . (12a)

The solutions of the equations (11) are:

�̃2
1 = �2

TO → ATO,1 = −ATO,1;ALO,1 = 0 (12b)

�̃2
2 = ω2

0 +1ω2
0→ ATO,2 = ATO,2 = 1TO,TO −1LO,LO/2+D

21TO,LO

ALO,2 (12c)

�̃2
3 = ω2

0 −1ω2
0→ ATO,3 = ATO,3 = 1TO,TO −1LO,LO/2−D

21TO,LO

ALO,3 (12d)

where

D =
√(

1TO,TO − 1LO,LO

2

)2

+ 2|1LO,TO |2. (12e)

Here the frequenciesω0 and1ω0 are defined as follows:

ω2
0 = �2

TO +1TO,TO + 1
21LO,LO (13a)

(1ω0) = 4
√
(1TO,TO − 1

21LO,LO)2+ 2|1TO,LO |2. (13b)

Due to the rapidly varying part of the polarization (i.e. the local-field effects) the threefold
degenerate phonon energy�TO at the centre of the Brillouin zone is split into three energies
�̃µ; µ = 1, 2, 3. Using the solutions (12) and (13) one can rewrite the dielectric constant
(10b) in the following form:

ε(ω) = ε∞ + (ε0− ε∞)ω2
0

(1+ C)C1

[
1

ω2
0 + (1ω0)2− ω2− iωγ

+ C

ω2
0 − (1ω0)2− ω2− iωγ

]
(14)

where

C = |ALO,3|
2

|ALO,2|2 C1 = 1− [(1− C)/(1+ C)]1ω2
0/ω

2
0

1−1ω4
0/ω

4
0

. (15)

The dielectric constant (14) depends on the six parameters:ε0, ε∞, ω0, γ ,1ω0 andC. Three
of themε0, ε∞, γ have a clear physical meaning, low and high dielectric constants and the
damping constant. The frequencyω0 is very close to�TO , because a characteristic feature
of the polar crystals is the predominance of the slowly varying part of the polarization as
compared with its rapidly varying part. Actually,ω0 and1ω0 determine the renormalization
(due to the local-field effects) of the three degenerate ‘bare’ phonon frequencies�TO . By
rewriting the dielectric constant (14) in the form:

ε(ω) = ε∞ +
∑
µ=2,3

Fµ

�̃2
µ − ω2− iωγ

one sees that the constantC is related to the oscillator strengthFµ (C = F3/F2).
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Figure 1. Lattice reflection spectrum of GaP. The experimental data (Kleinman and Spitzer
1960) are shown in circles, and the calculated fit by using six parameters by the solid line.

Figure 2. Index of refraction of GaP, calculated by using a one-oscillator model (- - - -), and
by taking into account the local-field effects (solid line).

3. Analysis of the reflectance data of GaP

It is physically reasonable to expect that the adjustable values of the low and high dielectric
constants and the value of the damping constant should slightly depend on the rapidly
varying part of the polarization. The major result of the local-field corrections is that the
triple degeneracy of the optical phonon bands at the centre of the Brillouin zone is removed
by the local-field effects arising from the rapidly varying part of the polarization.

The problem now is to fit the reflectance data of GaP by means of the dielectric constant
(14), i.e. in terms of six parametersε0, ε∞, ω0, γ , 1ω0 andC. Our numerical calculations
show that the best values ofε0, ε∞, ω0, γ , 1ω0 andC, obtained by adjusting those six
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Figure 3. Extinction coefficient of GaP, calculated by using a one-oscillator model (- - - -), and
by taking into account the local-field effects (solid line).

parameters to give the best fit of the calculated reflectivity curve to the experimental one
(Kleinman and Spitzer 1960), are

ε0 = 10.182 ε∞ = 8.457 γ /ω0 = 0.003 ω0 = 365.9 cm−1 (λ0 = 27.33 µm)

1ω0/ω0 = 0.045 C = 0.419. (16)

The reflectivityR(λ), calculated by means of the set of parameters (16) is shown in
figure 1. The position of the reflectivity minimum is at 24.60 µm. The experimental
data by Kleinman and Spitzer (1960), which were given in graphical form, were read out
directly and plotted in figure 1. The small discrepancy in the range of the reflectivity
maximum between the experimental data and calculated curve is due to the surface effects
(Kleinman and Spitzer 1960). The index of refractionn(λ) and the extinction coefficient
k(λ), plotted against wavelength in micrometres obtained from the reflectivity calculations
by using parameters (3) and (16), are presented in figures 2 and 3.

In conclusion it is worth noting that the quality of the fit achieved with six adjustable
parameters is almost the same as that achieved by Kleinman and Spitzer. The percentage
correction to the reflectivity calculated using the dielectric constant (1) with the set of
parameters (3) and that shown in figure 1 is less than 1% in the range 16–40µm.
However, the percentage corrections due to the local-field effects to the index of refraction
and extinction coefficient near resonance (27.20–27.40 µm) have been estimated as being
significant (about 15–20% for the index of refraction and about 30–40% for the extinction
coefficient).
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